1. Flink大数据实时处理设计方案
整套方案通过Canal + Kafka 连接器 + Protobuf,实现数据的同步接入, 由Flink服务负责对各类业务数据的实时统计处理。
2. 热销商品的统计处理
功能
实现对热销商品的统计, 统计周期为一天, 每3秒刷新一次数据。
核心代码
主逻辑实现:
/**
* 执行Flink任务处理
* @throws Exception
*/
private void executeFlinkTask() throws Exception {
// 1. 创建运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 2. 设置kafka服务连接信息
Properties properties = new Properties();
properties.setProperty(“bootstrap.servers”, “10.10.20.132:9092”);
properties.setProperty(“group.id”, “fink_group”);
// 3. 创建Kafka消费端
FlinkKafkaConsumer kafkaProducer = new FlinkKafkaConsumer(
“order_binlog”, // 目标 topic
new SimpleStringSchema(), // 序列化 配置
properties);
// 调试,重新从最早记录消费
kafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// 4. 读取Kafka数据源
DataStreamSource<String> socketStr = env.addSource(kafkaProducer);
// 5. 数据过滤转换处理
socketStr.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
String isDDL = jsonObject.get(“isDdl”).getAsString();
String type = jsonObject.get(“type”).getAsString();
// 过滤条件: 非DDL操作, 并且是新增的数据
return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type);
}
}).flatMap(new FlatMapFunction<String, Order>() {
@Override
public void flatMap(String value, Collector<Order> out) throws Exception {
// 获取JSON中的data数据
JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”);
// 将data数据转换为java对象
for(int i =0; i< dataArray.size(); i++) {
JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class);
System.out.println(“order => ” + order);
out.collect(order);
}
}
})
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) {
@Override
public long extractTimestamp(Order element) {
return element.getExecTime();
}
})
.keyBy(Order::getGoodsId)
.timeWindow(Time.hours(24), Time.seconds(3))
.aggregate(new TotalAmount(), new AmountWindow())
.keyBy(HotOrder::getTimeWindow)
.process(new TopNHotOrder());
// 6. 执行任务
env.execute(“job”);
}
热销商品的金额累加处理:
/**
* 商品金额累加器
*/
private static class TotalAmount implements AggregateFunction<Order, Order, Order> {
@Override
public Order createAccumulator() {
Order order = new Order();
order.setTotalAmount(0l);
return order;
}
/**
* 累加统计商品销售总金额
* @param value
* @param accumulator
* @return
*/
@Override
public Order add(Order value, Order accumulator) {
accumulator.setGoodsId(value.getGoodsId());
accumulator.setGoodsName((value.getGoodsName()));
accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume()));
return accumulator;
}
@Override
public Order getResult(Order accumulator) {
return accumulator;
}
@Override
public Order merge(Order a, Order b) {
return null;
}
}
热销商品的数据转换处理, 用于统计:
/**
* 热销商品, 在时间窗口内, 对象数据的转换处理
*/
private static class AmountWindow implements WindowFunction<Order, HotOrder, Long, TimeWindow> {
@Override
public void apply(Long goodsId, TimeWindow window, Iterable<Order> input, Collector<HotOrder> out) throws Exception {
Order order = input.iterator().next();
out.collect(new HotOrder(goodsId, order.getGoodsName(), order.getTotalAmount(), window.getEnd()));
}
}
热销商品的统计排行处理逻辑:
/**
* 热销商品的统计排行实现
*/
private class TopNHotOrder extends KeyedProcessFunction<Long, HotOrder, String> {
private ListState<HotOrder> orderState;
@Override
public void processElement(HotOrder value, Context ctx, Collector<String> out) throws Exception {
// 将数据加入到状态列表里面
orderState.add(value);
// 注册定时器
ctx.timerService().registerEventTimeTimer(value.getTimeWindow());
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
List<HotOrder> orderList = new ArrayList<>();
for(HotOrder order : orderState.get()){
orderList.add(order);
}
// 按照成交总金额, 倒序排列
orderList.sort(Comparator.comparing(HotOrder::getTotalAmount).reversed());
orderState.clear();
// 将数据写入至ES
HotOrderRepository hotOrderRepository = (HotOrderRepository) ApplicationContextUtil.getBean(“hotOrderRepository”);
StringBuffer strBuf = new StringBuffer();
for(HotOrder order: orderList) {
order.setId(order.getGoodsId());
order.setCreateDate(new Date(order.getTimeWindow()));
hotOrderRepository.save(order);
strBuf.append(order).append(“\n”);
System.out.println(“result => ” + order);
}
out.collect(strBuf.toString());
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotOrder>(“hot-order”, HotOrder.class));
}
}
3. 区域热销商品统计处理 (多维度条件)
功能
功能: 根据不同区域(比如省份、城市), 实现对热销商品的统计, 统计周期为一天, 每3秒刷新一次数据。
核心代码
主逻辑代码:
/**
* 执行Flink任务处理
* @throws Exception
*/
private void executeFlinkTask() throws Exception {
// 1. 创建运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 2. 设置kafka服务连接信息
Properties properties = new Properties();
properties.setProperty(“bootstrap.servers”, “10.10.20.132:9092”);
properties.setProperty(“group.id”, “fink_group”);
// 3. 创建订单的Kafka消费端
FlinkKafkaConsumer orderKafkaProducer = new FlinkKafkaConsumer(
“order_binlog”, // 目标 topic
new SimpleStringSchema(), // 序列化 配置
properties);
// 调试,重新从最早记录消费
orderKafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// 4. 创建地址信息的kafka消费端
FlinkKafkaConsumer addressKafkaProducer = new FlinkKafkaConsumer(
“orderAddress_binlog”, // 目标 topic
new SimpleStringSchema(), // 序列化 配置
properties);
// 调试,重新从最早记录消费
addressKafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始
// 5. 读取Kafka数据源(订单数据源和地址数据源)
DataStreamSource<String> orderStream = env.addSource(orderKafkaProducer);
DataStreamSource<String> addressStream = env.addSource(addressKafkaProducer);
// 6. 数据过滤转换处理(订单数据)
DataStream<Order> orderDataStream = orderStream.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
String isDDL = jsonObject.get(“isDdl”).getAsString();
String type = jsonObject.get(“type”).getAsString();
// 过滤条件: 非DDL操作, 并且是新增的数据
return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type);
}
}).flatMap(new FlatMapFunction<String, Order>() {
@Override
public void flatMap(String value, Collector<Order> out) throws Exception {
// 获取JSON中的data数据
JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”);
// 将data数据转换为java对象
for(int i =0; i< dataArray.size(); i++) {
JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class);
System.out.println(“order => ” + order);
out.collect(order);
}
}
})
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) {
@Override
public long extractTimestamp(Order element) {
return element.getExecTime();
}
});
// 7. 过滤转换地址数据源
DataStream<OrderAddress> orderAddressDataStream = addressStream.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value);
String isDDL = jsonObject.get(“isDdl”).getAsString();
String type = jsonObject.get(“type”).getAsString();
// 过滤条件: 非DDL操作, 并且是新增的数据
return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type);
}
}).flatMap(new FlatMapFunction<String, OrderAddress>() {
@Override
public void flatMap(String value, Collector<OrderAddress> out) throws Exception {
// 获取JSON中的data数据
JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”);
// 将data数据转换为java对象
for(int i =0; i< dataArray.size(); i++) {
JsonObject jsonObject = dataArray.get(i).getAsJsonObject();
OrderAddress orderAddress = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, OrderAddress.class);
System.out.println(“orderAddress => ” + orderAddress);
out.collect(orderAddress);
}
}
})
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<OrderAddress>(Time.seconds(0)) {
@Override
public long extractTimestamp(OrderAddress element) {
return element.getExecTime();
}
});
// 8. 订单数据流和地址数据流的join处理
orderDataStream.join(orderAddressDataStream).where(new KeySelector<Order, Object>() {
@Override
public Object getKey(Order value) throws Exception {
return value.getId();
}
}).equalTo(new KeySelector<OrderAddress, Object>() {
@Override
public Object getKey(OrderAddress value) throws Exception {
return value.getOrderId();
}
})
// 这里的时间, 相比下面的时间窗滑动值slide快一些
.window(TumblingEventTimeWindows.of(Time.seconds(2)))
.apply(new JoinFunction<Order, OrderAddress, JoinOrderAddress>() {
@Override
public JoinOrderAddress join(Order first, OrderAddress second) throws Exception {
return JoinOrderAddress.build(first, second);
}
}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<JoinOrderAddress>(Time.seconds(0)) {
@Override
public long extractTimestamp(JoinOrderAddress element) {
return element.getExecTime();
}
})
// 9. 根据省份和商品ID进行数据分组
.keyBy(new KeySelector<JoinOrderAddress, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> getKey(JoinOrderAddress value) throws Exception {
return Tuple2.of(value.getProvince(), value.getGoodsId());
}
})
.timeWindow(Time.hours(24), Time.seconds(3))
.aggregate(new TotalAmount(), new AmountWindow())
.keyBy(HotDimensionOrder::getTimeWindow)
.process(new TopNDimensionOrder());
// 10. 执行任务
env.execute(“job”);
}
商品金额累加器:
/**
* 商品金额累加器
*/
private static class TotalAmount implements AggregateFunction<JoinOrderAddress, JoinOrderAddress, JoinOrderAddress> {
@Override
public JoinOrderAddress createAccumulator() {
JoinOrderAddress order = new JoinOrderAddress();
order.setTotalAmount(0l);
return order;
}
/**
* 商品销售总金额累加处理
* @param value
* @param accumulator
* @return
*/
@Override
public JoinOrderAddress add(JoinOrderAddress value, JoinOrderAddress accumulator) {
accumulator.setGoodsId(value.getGoodsId());
accumulator.setGoodsName((value.getGoodsName()));
accumulator.setProvince(value.getProvince());
accumulator.setCity(value.getCity());
accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume()));
return accumulator;
}
@Override
public JoinOrderAddress getResult(JoinOrderAddress accumulator) {
return accumulator;
}
@Override
public JoinOrderAddress merge(JoinOrderAddress a, JoinOrderAddress b) {
return null;
}
}
热销商品的数据转换处理:
private static class AmountWindow implements WindowFunction<JoinOrderAddress, HotDimensionOrder, Tuple2<String, Long>, TimeWindow> {
@Override
public void apply(Tuple2<String, Long> goodsId, TimeWindow window, Iterable<JoinOrderAddress> input, Collector<HotDimensionOrder> out) throws Exception {
JoinOrderAddress order = input.iterator().next();
out.collect(new HotDimensionOrder(order, window.getEnd()));
}
}
根据不同区域的热销商品, 实现统计排行:
private class TopNDimensionOrder extends KeyedProcessFunction<Long, HotDimensionOrder, String> {
private ListState<HotDimensionOrder> orderState;
@Override
public void processElement(HotDimensionOrder value, Context ctx, Collector<String> out) throws Exception {
// 将数据加入到状态列表里面
orderState.add(value);
// 注册定时器
ctx.timerService().registerEventTimeTimer(value.getTimeWindow());
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
List<HotDimensionOrder> orderList = new ArrayList<>();
for(HotDimensionOrder order : orderState.get()){
orderList.add(order);
}
// 按照省份和商品的成交总金额, 倒序排列
orderList.sort(Comparator.comparing(HotDimensionOrder::getProvince).thenComparing(HotDimensionOrder::getTotalAmount, Comparator.reverseOrder()));
orderState.clear();
// 将数据写入至ES
HotDimensionRepository hotDimensionRepository = (HotDimensionRepository) ApplicationContextUtil.getBean(“hotDimensionRepository”);
StringBuffer strBuf = new StringBuffer();
for(HotDimensionOrder order: orderList) {
order.setId(order.getProvince() + order.getGoodsId());
order.setCreateDate(new Date(order.getTimeWindow()));
hotDimensionRepository.save(order);
strBuf.append(order).append(“\n”);
System.out.println(“result => ” + order);
}
out.collect(strBuf.toString());
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotDimensionOrder>(“hot-dimension”, HotDimensionOrder.class));
}
}
本文由mirson创作分享,如需进一步交流,请加QQ群:19310171或访问www.softart.cn
THE END
暂无评论内容