Fllink实时计算运用(八)Flink 大数据实战案例一

1. Flink大数据实时处理设计方案

整套方案通过Canal + Kafka 连接器 + Protobuf,实现数据的同步接入, 由Flink服务负责对各类业务数据的实时统计处理。

2. 热销商品的统计处理

功能

实现对热销商品的统计, 统计周期为一天, 每3秒刷新一次数据。

核心代码

主逻辑实现:

/** * 执行Flink任务处理 * @throws Exception */ private void executeFlinkTask() throws Exception { // 1. 创建运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 设置kafka服务连接信息 Properties properties = new Properties(); properties.setProperty(“bootstrap.servers”, “10.10.20.132:9092”); properties.setProperty(“group.id”, “fink_group”); // 3. 创建Kafka消费端 FlinkKafkaConsumer kafkaProducer = new FlinkKafkaConsumer( “order_binlog”, // 目标 topic new SimpleStringSchema(), // 序列化 配置 properties); // 调试,重新从最早记录消费 kafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); env.setParallelism(1); // 4. 读取Kafka数据源 DataStreamSource<String> socketStr = env.addSource(kafkaProducer); // 5. 数据过滤转换处理 socketStr.filter(new FilterFunction<String>() { @Override public boolean filter(String value) throws Exception { JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value); String isDDL = jsonObject.get(“isDdl”).getAsString(); String type = jsonObject.get(“type”).getAsString(); // 过滤条件: 非DDL操作, 并且是新增的数据 return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type); } }).flatMap(new FlatMapFunction<String, Order>() { @Override public void flatMap(String value, Collector<Order> out) throws Exception { // 获取JSON中的data数据 JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”); // 将data数据转换为java对象 for(int i =0; i< dataArray.size(); i++) { JsonObject jsonObject = dataArray.get(i).getAsJsonObject(); Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class); System.out.println(“order => ” + order); out.collect(order); } } }) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) { @Override public long extractTimestamp(Order element) { return element.getExecTime(); } }) .keyBy(Order::getGoodsId) .timeWindow(Time.hours(24), Time.seconds(3)) .aggregate(new TotalAmount(), new AmountWindow()) .keyBy(HotOrder::getTimeWindow) .process(new TopNHotOrder()); // 6. 执行任务 env.execute(“job”); }

热销商品的金额累加处理:

/** * 商品金额累加器 */ private static class TotalAmount implements AggregateFunction<Order, Order, Order> { @Override public Order createAccumulator() { Order order = new Order(); order.setTotalAmount(0l); return order; } /** * 累加统计商品销售总金额 * @param value * @param accumulator * @return */ @Override public Order add(Order value, Order accumulator) { accumulator.setGoodsId(value.getGoodsId()); accumulator.setGoodsName((value.getGoodsName())); accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume())); return accumulator; } @Override public Order getResult(Order accumulator) { return accumulator; } @Override public Order merge(Order a, Order b) { return null; } }

热销商品的数据转换处理, 用于统计:

/** * 热销商品, 在时间窗口内, 对象数据的转换处理 */ private static class AmountWindow implements WindowFunction<Order, HotOrder, Long, TimeWindow> { @Override public void apply(Long goodsId, TimeWindow window, Iterable<Order> input, Collector<HotOrder> out) throws Exception { Order order = input.iterator().next(); out.collect(new HotOrder(goodsId, order.getGoodsName(), order.getTotalAmount(), window.getEnd())); } }

热销商品的统计排行处理逻辑:

/** * 热销商品的统计排行实现 */ private class TopNHotOrder extends KeyedProcessFunction<Long, HotOrder, String> { private ListState<HotOrder> orderState; @Override public void processElement(HotOrder value, Context ctx, Collector<String> out) throws Exception { // 将数据加入到状态列表里面 orderState.add(value); // 注册定时器 ctx.timerService().registerEventTimeTimer(value.getTimeWindow()); } @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception { List<HotOrder> orderList = new ArrayList<>(); for(HotOrder order : orderState.get()){ orderList.add(order); } // 按照成交总金额, 倒序排列 orderList.sort(Comparator.comparing(HotOrder::getTotalAmount).reversed()); orderState.clear(); // 将数据写入至ES HotOrderRepository hotOrderRepository = (HotOrderRepository) ApplicationContextUtil.getBean(“hotOrderRepository”); StringBuffer strBuf = new StringBuffer(); for(HotOrder order: orderList) { order.setId(order.getGoodsId()); order.setCreateDate(new Date(order.getTimeWindow())); hotOrderRepository.save(order); strBuf.append(order).append(“\n”); System.out.println(“result => ” + order); } out.collect(strBuf.toString()); } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotOrder>(“hot-order”, HotOrder.class)); } }

3. 区域热销商品统计处理 (多维度条件)

功能

功能: 根据不同区域(比如省份、城市), 实现对热销商品的统计, 统计周期为一天, 每3秒刷新一次数据。

核心代码

主逻辑代码:

/** * 执行Flink任务处理 * @throws Exception */ private void executeFlinkTask() throws Exception { // 1. 创建运行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 2. 设置kafka服务连接信息 Properties properties = new Properties(); properties.setProperty(“bootstrap.servers”, “10.10.20.132:9092”); properties.setProperty(“group.id”, “fink_group”); // 3. 创建订单的Kafka消费端 FlinkKafkaConsumer orderKafkaProducer = new FlinkKafkaConsumer( “order_binlog”, // 目标 topic new SimpleStringSchema(), // 序列化 配置 properties); // 调试,重新从最早记录消费 orderKafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); env.setParallelism(1); // 4. 创建地址信息的kafka消费端 FlinkKafkaConsumer addressKafkaProducer = new FlinkKafkaConsumer( “orderAddress_binlog”, // 目标 topic new SimpleStringSchema(), // 序列化 配置 properties); // 调试,重新从最早记录消费 addressKafkaProducer.setStartFromEarliest(); // 尽可能从最早的记录开始 // 5. 读取Kafka数据源(订单数据源和地址数据源) DataStreamSource<String> orderStream = env.addSource(orderKafkaProducer); DataStreamSource<String> addressStream = env.addSource(addressKafkaProducer); // 6. 数据过滤转换处理(订单数据) DataStream<Order> orderDataStream = orderStream.filter(new FilterFunction<String>() { @Override public boolean filter(String value) throws Exception { JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value); String isDDL = jsonObject.get(“isDdl”).getAsString(); String type = jsonObject.get(“type”).getAsString(); // 过滤条件: 非DDL操作, 并且是新增的数据 return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type); } }).flatMap(new FlatMapFunction<String, Order>() { @Override public void flatMap(String value, Collector<Order> out) throws Exception { // 获取JSON中的data数据 JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”); // 将data数据转换为java对象 for(int i =0; i< dataArray.size(); i++) { JsonObject jsonObject = dataArray.get(i).getAsJsonObject(); Order order = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, Order.class); System.out.println(“order => ” + order); out.collect(order); } } }) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Order>(Time.seconds(0)) { @Override public long extractTimestamp(Order element) { return element.getExecTime(); } }); // 7. 过滤转换地址数据源 DataStream<OrderAddress> orderAddressDataStream = addressStream.filter(new FilterFunction<String>() { @Override public boolean filter(String value) throws Exception { JsonObject jsonObject = GsonConvertUtil.getSingleton().getJsonObject(value); String isDDL = jsonObject.get(“isDdl”).getAsString(); String type = jsonObject.get(“type”).getAsString(); // 过滤条件: 非DDL操作, 并且是新增的数据 return isDDL.equalsIgnoreCase(“false”) && “INSERT”.equalsIgnoreCase(type); } }).flatMap(new FlatMapFunction<String, OrderAddress>() { @Override public void flatMap(String value, Collector<OrderAddress> out) throws Exception { // 获取JSON中的data数据 JsonArray dataArray = GsonConvertUtil.getSingleton().getJsonObject(value).getAsJsonArray(“data”); // 将data数据转换为java对象 for(int i =0; i< dataArray.size(); i++) { JsonObject jsonObject = dataArray.get(i).getAsJsonObject(); OrderAddress orderAddress = GsonConvertUtil.getSingleton().cvtJson2Obj(jsonObject, OrderAddress.class); System.out.println(“orderAddress => ” + orderAddress); out.collect(orderAddress); } } }) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<OrderAddress>(Time.seconds(0)) { @Override public long extractTimestamp(OrderAddress element) { return element.getExecTime(); } }); // 8. 订单数据流和地址数据流的join处理 orderDataStream.join(orderAddressDataStream).where(new KeySelector<Order, Object>() { @Override public Object getKey(Order value) throws Exception { return value.getId(); } }).equalTo(new KeySelector<OrderAddress, Object>() { @Override public Object getKey(OrderAddress value) throws Exception { return value.getOrderId(); } }) // 这里的时间, 相比下面的时间窗滑动值slide快一些 .window(TumblingEventTimeWindows.of(Time.seconds(2))) .apply(new JoinFunction<Order, OrderAddress, JoinOrderAddress>() { @Override public JoinOrderAddress join(Order first, OrderAddress second) throws Exception { return JoinOrderAddress.build(first, second); } }).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<JoinOrderAddress>(Time.seconds(0)) { @Override public long extractTimestamp(JoinOrderAddress element) { return element.getExecTime(); } }) // 9. 根据省份和商品ID进行数据分组 .keyBy(new KeySelector<JoinOrderAddress, Tuple2<String, Long>>() { @Override public Tuple2<String, Long> getKey(JoinOrderAddress value) throws Exception { return Tuple2.of(value.getProvince(), value.getGoodsId()); } }) .timeWindow(Time.hours(24), Time.seconds(3)) .aggregate(new TotalAmount(), new AmountWindow()) .keyBy(HotDimensionOrder::getTimeWindow) .process(new TopNDimensionOrder()); // 10. 执行任务 env.execute(“job”); }

商品金额累加器:

/** * 商品金额累加器 */ private static class TotalAmount implements AggregateFunction<JoinOrderAddress, JoinOrderAddress, JoinOrderAddress> { @Override public JoinOrderAddress createAccumulator() { JoinOrderAddress order = new JoinOrderAddress(); order.setTotalAmount(0l); return order; } /** * 商品销售总金额累加处理 * @param value * @param accumulator * @return */ @Override public JoinOrderAddress add(JoinOrderAddress value, JoinOrderAddress accumulator) { accumulator.setGoodsId(value.getGoodsId()); accumulator.setGoodsName((value.getGoodsName())); accumulator.setProvince(value.getProvince()); accumulator.setCity(value.getCity()); accumulator.setTotalAmount(accumulator.getTotalAmount() + (value.getExecPrice() * value.getExecVolume())); return accumulator; } @Override public JoinOrderAddress getResult(JoinOrderAddress accumulator) { return accumulator; } @Override public JoinOrderAddress merge(JoinOrderAddress a, JoinOrderAddress b) { return null; } }

热销商品的数据转换处理:

private static class AmountWindow implements WindowFunction<JoinOrderAddress, HotDimensionOrder, Tuple2<String, Long>, TimeWindow> { @Override public void apply(Tuple2<String, Long> goodsId, TimeWindow window, Iterable<JoinOrderAddress> input, Collector<HotDimensionOrder> out) throws Exception { JoinOrderAddress order = input.iterator().next(); out.collect(new HotDimensionOrder(order, window.getEnd())); } }

根据不同区域的热销商品, 实现统计排行:

private class TopNDimensionOrder extends KeyedProcessFunction<Long, HotDimensionOrder, String> { private ListState<HotDimensionOrder> orderState; @Override public void processElement(HotDimensionOrder value, Context ctx, Collector<String> out) throws Exception { // 将数据加入到状态列表里面 orderState.add(value); // 注册定时器 ctx.timerService().registerEventTimeTimer(value.getTimeWindow()); } @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception { List<HotDimensionOrder> orderList = new ArrayList<>(); for(HotDimensionOrder order : orderState.get()){ orderList.add(order); } // 按照省份和商品的成交总金额, 倒序排列 orderList.sort(Comparator.comparing(HotDimensionOrder::getProvince).thenComparing(HotDimensionOrder::getTotalAmount, Comparator.reverseOrder())); orderState.clear(); // 将数据写入至ES HotDimensionRepository hotDimensionRepository = (HotDimensionRepository) ApplicationContextUtil.getBean(“hotDimensionRepository”); StringBuffer strBuf = new StringBuffer(); for(HotDimensionOrder order: orderList) { order.setId(order.getProvince() + order.getGoodsId()); order.setCreateDate(new Date(order.getTimeWindow())); hotDimensionRepository.save(order); strBuf.append(order).append(“\n”); System.out.println(“result => ” + order); } out.collect(strBuf.toString()); } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); orderState = getRuntimeContext().getListState(new ListStateDescriptor<HotDimensionOrder>(“hot-dimension”, HotDimensionOrder.class)); } }

本文由mirson创作分享,如需进一步交流,请加QQ群:19310171或访问www.softart.cn

    THE END
    喜欢就支持一下吧
    点赞5 分享
    评论 抢沙发
    头像
    欢迎您留下宝贵的见解!
    提交
    头像

    昵称

    取消
    昵称表情代码图片

      暂无评论内容